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Data Acquisition

X-Ray forward model with noise:

R︸︷︷︸
full transform

u + η︸︷︷︸
noise

= b︸︷︷︸
data
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Data Acquisition

X-Ray forward model with noise:

S︸︷︷︸
subsample

R︸︷︷︸
full transform

u + η︸︷︷︸
noise

= b︸︷︷︸
data
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Physical Motivation
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Impact on Reconstructions
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A Simpler Example

Standard Model: Total Variational Reconstruction

reconstruction = argmin
u

1

2
‖SRu − b‖2

2 + λ ‖∇u‖2,1

Compressed sensing in electron tomography, Leary, Saghi, Midgley, Holland
2013
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A Simpler Example

Standard Model: Total Variational Reconstruction

reconstruction = argmin
u

1

2
‖SRu − b‖2

2 + λ ‖∇u‖2,1

The solution: global regularisation in data space

Compressed sensing in electron tomography, Leary, Saghi, Midgley, Holland
2013
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Anisotropic Total Variation

Method from inpainting literature:

reconstruction = argmin
v

1

2
‖Sv − b‖2

2 + λ ‖A∇v‖2,1

+ =

Figure adapted from Blind image fusion for hyperspectral imaging
with the directional total variation, Bungert, Coomes, Ehrhardt,
Rasch, Reisenhofer, Schönlieb 2018

Anisotropic Diffusion in Image Processing, Weickert 1998
A flexible space-variant anisotropic regularisation for image restoration with
automated parameter selection, Calatroni, Lanza, Pragliola, Sgallari 2019
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Our Model

Energy Functional:

E (u, v) =
1

2
‖Sv − b‖2

2 + α ‖A∇v‖2,1︸ ︷︷ ︸
inpainting problem

+
1

2
‖Ru − v‖2

β + γ ‖∇u‖2,1 + χu≥0︸ ︷︷ ︸
fully sampled reconstruction

Reconstruction Method:

reconstruction = argmin
u,v

E (u, v)

where A is an anisotropic diffusion tensor.
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Our Model

Energy Functional:

E (u, v) =
1

2
‖Sv − b‖2

2 + α ‖A(Ru)∇v‖2,1︸ ︷︷ ︸
inpainting problem

+
1

2
‖Ru − v‖2

β + γ ‖∇u‖2,1 + χu≥0︸ ︷︷ ︸
fully sampled reconstruction

Problem:
A = A(reconstruction) A = A(Ru)

Theorem

For suitable choices of hyperparameters, A ∈ C∞ and E is weakly
lower semi-continuous.
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Sanity Check

It is a hard non-convex/non-smooth optimization problem but it
does add the right sort of information.
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Literature Review

Reference Structure Complexity Intepretability

Dong, Li, Shen
2013

Wavelet Convex High

Current talk 2019 Anisotropy near-Convex Medium
Bubba, Kutyniok,
et. al. 2018

Learned non-convex Low

X-ray CT image reconstruction via wavelet frame based regularization and
Radon domain inpainting, Dong, Li, Shen 2013
Learning the invisible: a hybrid deep learning-shearlet framework for limited
angle computed tomography, Bubba, Kutyniok, Lassas, März, Samek, Siltanen,
Srinivasan 2018
Limited Angle Tomography - Rob Tovey Proposed Sparsity Model 10 / 24



1 Problem Motivation

2 Proposed Sparsity Model

3 Non-Convex and Non-Differentiable Optimisation

4 Numerical Experiments

Limited Angle Tomography - Rob Tovey Non-Convex and Non-Differentiable Optimisation 11 / 24



Can we avoid Non-Convex/Non-Differentiable?

Generalization of the model:

E (u, v) = f (u, v) + ‖A(u)v‖1

where f is simple, jointly-convex.

Non-Convex/-Differentiable  not optimizable directly

Mantra: simplify→penalize→optimize→repeat. . .

Our solution, (bi-)convexify:

A(u)v ≈ A(u0)v +∇A(u0)(u − u0)v

is a bilinear.
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The Alternative

un+1 = argmin
u

f (u, vn) + ‖[A(un) +∇A(un)(u − un)]vn‖1

+ τ ‖u − un‖2
2

vn+1 = argmin
v

f (un+1, v) + ‖A(un+1)v‖1 + ‖v − vn‖2
2

Error bounds, quadratic growth, and linear convergence of proximal
methods, Drusvyatskiy and Lewis 2016
Non-smooth Non-convex Bregman Minimization: Unification and new
Algorithms, Ochs, Fadili, and Brox 2017
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Convergence Results

Theorem

1 In general Banach spaces we have a monotone decrease
property

E (un+1, vn+1) ≤ E (un, vn)

N∑
‖un+1 − un‖2

2 +‖vn+1 − vn‖2
2 ≤ E (u0, v0)−E (uN+1, vN+1)

2 In finite dimensions, a subsequence must converge

3 Any limit point must be critical in u and critical in v

Proximal alternating linearized minimization for nonconvex and nonsmooth
problems, Bolte, Sabach, Teboulle 2013
Non-smooth Non-convex Bregman Minimization: Unification and new
Algorithms, Ochs, Fadili, Brox 2017
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Shepp-Logan Phantom Example
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Shepp-Logan Phantom Example
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Experimental Example
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Experimental Example
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TV, full Proposed, full

TV, sub-sampled Proposed, sub-sampled
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Summary

We have given an example where limited data is unavoidable

Acknowledging the missing data explicitly allows us to
mitigate errors

Optimising where you are detecting structure on-the-fly is
intrinsically hard

We have given an example of the types of optimization tools
available in this case

A good choice of inpainting prior allows us to recover key
geometrical features
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Thank you for your attention

For more information:
Directional Sinogram Inpainting for Limited Angle Tomography,
T., Benning, Brune, Lagerwerf, Collins, Leary, Midgley, Schönlieb
Inverse Problems 2019
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Reconstructions from ‘bad’ Data
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Sketch Proof of Convergence

By construction of algorithm:

E (un, vn) + ‖vn − vn−1‖2
2 ≤ E (un, v) + ‖v − vn−1‖2

2 ∀v (∗)

and equivalently for u.

Limited Angle Tomography - Rob Tovey Summary 24 / 24



Sketch Proof of Convergence

By construction of algorithm:

E (un, vn) + ‖vn − vn−1‖2
2 ≤ E (un, v) + ‖v − vn−1‖2

2 ∀v (∗)

and equivalently for u.
Summability:

(∗) =⇒ ‖un − un−1‖2
2 +‖vn − vn−1‖2

2 ≤ E (un−1, vn−1)−E (un, vn)
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Sketch Proof of Convergence

By construction of algorithm:

E (un, vn) + ‖vn − vn−1‖2
2 ≤ E (un, v) + ‖v − vn−1‖2

2 ∀v (∗)

and equivalently for u.
Summability:

(∗) =⇒ ‖un − un−1‖2
2 +‖vn − vn−1‖2

2 ≤ E (un−1, vn−1)−E (un, vn)

Limit points are critical points:

(∗) =⇒ E (u∞, v∞) ≤ E (u∞, v) + ‖v − v∞‖2
2

=⇒ E (u∞, v)− E (u∞, v∞)

‖v − v∞‖
= O(‖v − v∞‖)

=⇒ ∂vE (u∞, v∞) = 0
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